WHAT ELSE SHOULD WE BE DOING WITH THE GCM-BASED FLOOD SIMULATIONS?

Michael Dettinger (USGS)
Tapash Das (Scripps Inst Oceanography)

Nonstationarity Workshop
Boulder, CO
14 January 2010
Death of Stationarity?

Stationarity never existed!

(Hirsch, Webb, ..., this meeting)
Death of Stationarity?

Stationarity never existed!
(Hirsch, Webb, …, this meeting)

So what ARE the challenges we face?

* Statistical characterization:
 Adaptive & projective frequency estimation
 Detection of change

Operations:
 Eroding margins for error

* Planning & design:
 Death of Optimality?
GHG forcings have not been growing steadily, so longer (older) records will not necessarily characterize GHG responses more accurately.

Statistical characterization: estimation

- Rising 8x as fast since 1970s

Global Radiative Forcing, 1870-2100
Statistical characterization: estimation

Sierra Nevada Summer Temperatures From Tree Rings & Current Projections

Deviations from 1928-1988 mean. 50-yr filter

Graumlich, 1993
Carrying along the weight/advantages of historical records

Estimating flood frequencies from observations:

• Use all the historical data?
• Weight the recent past more? How?
• Use sliding windows of only past 50-yr of record? N-yr?
 GHG-weightings (crtsy Bob Hirsch)?
• Adaptive estimators (e.g., Kalman filter, FARMA)?
A Modest Proposal

We need anthropogenic-climate-change-suited estimation heuristics. The “best” estimation methods will depend on mixes of variability & trends, steepness of trends, etc.

Warts & all, GCM-based flood-series projections provide the most specific available basis for testing and/or developing methods.
Statistical characterization: detection

• SHOULD we have seen detectable flood changes by now?

• Early warnings of change

Flood frequency analyses of the Santa Cruz R, Tucson, AZ

Webb & Betancourt, 1992, USGS WSP 2379
Statistical characterization: detection

Observed change in flood mechanisms!

From a couple of my favorite rivers in Southern Sierra Nevada

USGS: science for a changing world
Statistical characterization: detection

Simulating daily flows with U of Wash’s VIC hydrologic model under CA-downscaled climate projxns

Simulated 99%-ile flows under climate projections

GCM: GFDL
Emissions: A2

◆ Same number of 99%-ile flow events, despite declining precipitation totals

◆ Mix of snowmelt vs rainfed floods changes in SoSN

Blue x = rain-driven
Red o = snowmelt

Dettinger et al 2009 CEC; Das et al, in prep
Long before flood-regime change shows up in annual-flood series stats, they will be heralded by changing flood types and/or contributing mechanisms.

We should be focusing on possible changes in flood mechanisms for indications of the future, in both models & data.
Death of Optimality?

Simulated 99%-ile flow events under future-climate projections

Under this particular GCM, flood magnitudes increase through the 21st Century DESPITE a 10-15% DECLINE in overall precipitation

Dettinger et al 2009 CEC; Das et al, in prep
Death of Optimality?

Northern Sierra
50-yr flood magnitudes

Southern Sierra
50-yr flood magnitudes

These kinds of ensemble scatter are unlikely to decline much in the coming decade.
Even 30- or 50-yr blocks of time provide few extreme events upon which to draw conclusions or uncertainty estimates.

Phil Mote, with climateprediction.net, and some of us others are beginning a MASSIVE-ENSEMBLE simulation process with a nested 25-km regional climate model of Western US. This time, outputs have been designed to be water-centric, e.g., annual flood series. 10,000s realizations on their way… Wanna play along?
Scatter among GCM-based flood statistics is unlikely to be reduced much in the next decade. So, “get over it!”—to echo Bob H

The Death of Optimality → We need to be focusing as much effort on revising or reinventing “Harvard Program” design METHODS as on reducing these uncertainties.

Ensembles of GCM-based future flood stats can provide a useful (if incomplete) resource for developing revised design & planning methods.
Roles for GCM-based flood simulations

Statistical characterization:

- Development of climate-change adapted estimation heuristics and methods
- Should we expect to have seen changes by now?
- Early warnings from changing flood processes

Planning & design:

- A developing massive-ensemble flood-projections archive
- Death of Optimality → Developing New Robustness-centric Paradigms/Methods & testing them on myriad plausible flood projections